A geometric approach to error estimates for conservation laws posed on a spacetime
نویسندگان
چکیده
Weconsider ahyperbolic conservation lawposedonan (N+1)-dimensional spacetime, whose flux is a field of differential forms of degree N. Generalizing the classical Kuznetsov’s method, we derive an L1 error estimate which applies to a large class of approximate solutions. In particular, we apply our main theorem and deal with two entropy solutions associated with distinct flux fields, as well as with an entropy solution and an approximate solution. Our framework encompasses, for instance, equations posed on a globally hyperbolic Lorentzian manifold.
منابع مشابه
Hyperbolic conservation laws on spacetimes. A finite volume scheme based on differential forms
We consider nonlinear hyperbolic conservation laws, posed on a differential (n + 1)-manifold with boundary referred to as a spacetime, and in which the “flux” is defined as a flux field of n-forms depending on a parameter (the unknown variable). We introduce a formulation of the initial and boundary value problem which is geometric in nature and is more natural than the vector field approach re...
متن کاملHelicopter Rotor Airloads Prediction Using CFD and Flight Test Measurement in Hover Flight
An implicit unsteady upwind solver including a mesh motion approach was applied to simulate a helicopter including body, main rotor and tail rotor in hover flight. The discretization was based on a second order finite volume approach with fluxes given by the Roeand#39;s scheme. Discretization of Geometric Conservation Laws (GCL) was devised in such a way that the three-dimensional flows on arbi...
متن کاملError estimates for scalar conservation laws by a kinetic approach
We use the kinetic approach of Perthame and Tadmor (1991) to calculate the error estimates for general scalar conservation laws governing problems in gas dynamics or fluid mechanics in general. The Kružkov and Kuznetsov techniques are generalized to this method, and an error bound of order √ ε (where ε is the mean free path) is obtained.
متن کاملApproximate spacetime symmetries and conservation laws
A notion of geometric symmetry is introduced that generalizes the classical concepts of Killing fields and other affine collineations. There is a sense in which flows under these new vector fields minimize deformations of the connection near a specified observer. Any exact affine collineations that may exist are special cases. The remaining vector fields can all be interpreted as analogs of Poi...
متن کاملWeakly Nonlinear Geometric Optics for Hyperbolic Systems of Conservation Laws by Gui - Qiang Chen University of Oxford Wei Xiang University of Oxford
We present a new approach to analyze the validation of weakly nonlinear geometric optics for entropy solutions of nonlinear hyperbolic systems of conservation laws whose eigenvalues are allowed to have constant multiplicity and corresponding characteristic fields to be linearly degenerate. The approach is based on our careful construction of more accurate auxiliary approximation to weakly nonli...
متن کامل